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A DfNAMIC PROGRAIEING APPROACH TO A COST-EFFECTIVENESS PROBLEM

ABSTRACT

The selection of an optimal weapon system on a cost-effectiveness basis is

formulated as a mathematical programming prcblem. The problem is solved using

the functional equation technique of dynamic programming.

The determination of nertain "appropriate" values for the arguments of the

functional equations is illustrated by a numerical excmple. The arguments are

obtained in a systematic manner by re-orting to the construction of auxiliary,

bookkeeping tables.
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INTH ODUCTIO

In rvalu:tint; the r-lIatllve valuc.' or am wvhn wr,'&pon .... wlth

to all other weapon syoltens, frequ,ntly a o-t-effortiverezso basik i:

establl shed.

A criterion for judgin; the cffectiveness of weapons systems involve:

a comparison of the results achieved by the respective weapon systems with thrc

costs of the systems.

Cost may be regarded not only as monetary cost but as the cost of the effort

required to prodce and use the weapon. The evaluation of weapons based on zu'h

a comparison of Jesults with efforts may be done in either of two ways: (1) in

the first procedure one fixes the cost of the effort, and endeavors to choose a±

weapon system or a set of weapon systems which yield a maximum of results;

(2) in the second procedure, one fixes the results,e.g., an expectation of

destroying several targets, and endeavors to choose a weapon system or systems

which achieve this result wi-,h a minimum cost. Briefly, form (1) gives maxim=s

results for fixed cost, and form (2) provides for determining the ninIr.um cost

requirLd to obtain fixed results. The first procedure was employed for the

current study.

SATEMENT OF TE PROBLEM

Suppose that we are to select a weapons system composed of n elements

El, E2 , ... Y En . The cost of the system is not to exceed the amount C. This

system is to be used to perform an assignment with a result measured by the

function R(E1, E2, ... , E). There exist several alternative choices for each

element Ei of the system, i.e., Ei belongs to the set (E1 l, Ei2 , ... Eik(i)].

Associated with each E i is a corresponding cost c ij. The problem then is

max R(Elj s E2 j2 "'" ' Enjn)(0lJ2,0..,d1 2)

subject to the constraint j
Cljl + c2J 2 + .. nin  0.C

Fortunately, for the particular problem under consideration the measure R has a

separability property,i.e., R(EI, E2 , ... , E) = gl(El) • g2(E2) ... • gn(E).
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Wer :re then able to reromuL)u:d,: t,ic problim +i; a mulaijr t,;i,'c d:" 1: wr pr"t+.'. ';r1

apply thr ft~uittional equation -,I'-hnilqttc or dyn'-il r ri ,, ,'j.

feasible computational +:eheno. The goal J. to rcduI'f: tht I,-dm-,n.r,,in,,L pr',Ak, 'I

to a sequence of one-dimensional problems. The Ith ;;aje of t,ho ro.t,, w.! L

result in a determination if an Ei. To attain th!, nimplification wc 1rniLr;d 1,h'.

problem within a family of similar problcmn, that i;, instead of coniideri::v

a particular total cost of the weapon ,yrucm, and a fixcd number of -]rnt: '

the system, we oonsider an entire fam!ly of problems where the cost -ay a.:

any value less than C and the number of elements may be any natur',l numtber .,1::'

than n. This approach enables one to obtain vital information alout the ch±r7c

in optimal policies as the basic paramet-!rs C and n vary. Surprisingly it iz

easier (computationally) to treat the original problem by consideration of th,

family of problems.

DYNAMIC PROGRAM1,IG FORMLrATI'ON OF THE PROBLEM

To treat this maximization problem by means of functional equation

techniques, we introduce the function fk(c) defined for 0 - c < C and

k = 1, 2, ... , n by the relation

f(') = [%(Eaj) g2(E ) ... • mx(0

where the maximum is to be taken over all vectors (Ji' J2) Jk), such that

Cj 1 + c2j 2 + ... + ckj k : c

Then fk(c) represents the maximum value of R associated with a weapon systeI

Involving k elements with a total cost of not more than c units. The

maximization involved in the above equation can be accomplished in k one-

dimensional maximization processes by employing Bellman's Principle of Opticmr!ity-.

Then,

k(c) Max k-l (c ; = 2, ' n.

he k f k

When k =1,



Matx g(E)
1 .1

where

lIjI

A SPECIAL PROBLEM

A weapon system is to be -omposed of three units, a gun unit, a projectilej

unit, and a fire control unit. The weanon system is to be assigned the task of

destroying a particular target. The measure R is to be identified with the I

probability, Q, that the system will destroy the target. Therefore we hare 't

our disposal a set of guns fGI, G 2, ... , G}, a set of projectiles

(PI' P , "'. P . 1, and a set of fire control units [F1 , F2, ... , F 1. Let

c Gi , 'p, and cFk designate the "costs" associated with the gun Gi, the

projectile Pj, and the fire control unit F,, respectively. The problem is tc

Max Q(Pi' Gi, Fk )[PGjFkI

subject to the constraint

CF + c + cF -S
i j k C

where

A N
v

@(Pi' GJ, F) - S2 -

Av = Av(Pi) is vulnerable area,

N = hkGj) is the number of rounds fired,

and

S = S(Fk ) is the average of the lateral andk
vertical standard deviations of the miss distance (ft).

9



Let

91.-A V

1
g= ,

and let

f (c) Max g1 (P1 ) g2(G ) g3(Fk)
(PIGjFk)

where

Pi Gj + F c.

Using the results of the previous section we find that

f(C) = Max gl(Pi) , (i)[P}

1j P 

f = Max rg (G9)

CG  <C

and

f (c) = Max Fg (Fa) f o )n ()

Fk L
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AN I LUJJI.I=A TVr. FXAMPLE

Problem: Gi, na ta ,t, c CWLoi tr:irK , C 22 unit:, on thc 'antr </ Ym

and ,,Iven th, tabular Irnput,;

P Av  = (r) ,-ost, C o N g (G) cont., c G 1', 1

I 5 . 1 14 5 1 14 .
2 1?2 6 h2.

5 o 4 3 9 65 J
4 Ii 7 4 12 9 4 25!

5 17 10

choose a g.n. a projectile, and a fire control unit so that the q. antity Ai/'/ i:

a rmaxi:.>,m. At this point the serious reider is encouraged to romputk the fi(c)

tables directly from the recurrence relations (1), (2), and (5) using the giv,.

input data.

In doing so he will observe that one is frcq-uently plagued by unnece":ary

computations. That is, he finds that integer -nit increases in the value of 'h,

argument c do not always produce increases in the payoff function f i(c),

inasmuch as the increase in the value of c is not sufficiently large enough to

admit the consideration of an additional entity (another gun or projectile or

fire control unit). The method outlined here provides a remedy. As the coz-t

variable is allowed to increase, only those values cf c which reslt in an

increase in the payoff function are exarmined by cnployig a bookkeeping

procedure in the form of auxiliary tables. Using Equation (1), we shall co-r.r

and record (in the table below) the values of fl(z) and P(z) associated with "hr

Cost Z.

1 1 5 1
2 2 8 2

5 4 9

4 7 ii 4

The next step in the procedure is the computation of f2(z). Here we

encounter the difficulty mentioned above. We shall resort to the constructicn of

several auxiliary, bookkeeping Tables 71l, II2,...,II12. Each table will ylrld

at most one row entry of the f2 (z) table.



'flit, ti, lx I I ' o i 1. , i:: r . I i w i V, I t. 1)4 i P 1 # V r I r t dl1. : 1r: Ii OW 7 A *,t i .

T:i l," .1  (,: ': , i I cd.

.(0x
°L)

L

10) ( 40
II1: 7 "L 1

11 z 5

(U) = + x7
where c ; C = i, , 5, i, .

Tablh II is obtained from Table II. usinj the following steps:j+l L

1) The G column. fc'r Table II i+ is the sa.ne as the G colu.t fnr

Table II..±
2) he ntres n te .~ (i) cin associated wi~h the minimz-I vaimue:2) The entries in the X4

i:. the c, col-r, of Table II. arc replaced by z+ I from the f (z) tale. If
1Y i4KlI

Z.() was the last entry, the:. z(1) is replaced by a iarie number. We will use

-he sy-r.bl to en:phesizc th.: fact. N w the entries c f the X(1) C DI of

Table II,+ are the Zane ac the ad,'zted en.tries of the X (1 coli.= of Table ML.

"I%.Te erntiiez in the c,, cc r. of II £ qual (2 + (i) f-ri+l CG G . wy~

1, 2, 3, 4, and X M is an entry from the II table.
=, ,j+l

4) Compute g(G).f (x)

The rezultin; tables are



I (() 92(, 1 G
5 5 2 7 4 r

5 . 50 2 6 41 2

.,, = 7 45 II, = 7 1 45 5

10 6 0 4 10 60 4

11 1 85 5 1 1 85 5

M(_, x() (2) (1)()c Go 92(G)-f 1 ( ) G cG xG g 2 (G). 1(xG )

7 36 1 10 7 44 1

8 4 54 2 8 4 54 2

114  7 1 45 3 115 =8 2 72 5

10 1 60 4 10 1 60 4

11 1 85 5 11 1 85 5

-(2) (1) 1)_(2) ,(1)

cG Xe(. g2 (G).f (Xg G C X 9 (G)-f 1 (Xl) G

10 7 44 1 1 c 1

11 7 66 2 11 7 66 2

161 0 4 81 5 117= 1 7 99 3

10 1" 60 4 1l 2 96 4

ii 1 85 511 1 85 5

(2) (X(i) -(2) (1)
CG XG g 2 ) CG G g 2 (G)" ) G

w o 1 c 2 w 1
CD coc 2 D CD co 2

I 13 7 99 3 119 =13 7 99 3

15 4 108 4 13 4 108 L

12 2 156 5 14 4 162 5

_(2) (1) (1) G_(2) ())

G G g 1  G 92 (G) 1 (X )G

w c o 1 1 (o wG

w O 2 c w o 2

IIl = w 3 = o 3
16 7 132 4 16 T 152 4

14 4 153 5 17 7 183 5



(2 (G- (i)-

w 1

2

12 3
14

17 7 187 5

We will now obtain the entries for the f2 (z) table from the auxiliary tablez

in the following manner:

For each table II let

42 - min{ (2G Then

Gf~~ {z2) a g (G)'f (X(l)) /j(2) z(1

GG

f z max { (G)-f (Xl) / c2
21G L 1G G =iJ

for i > 1.

From our example we obtain z = min (4, 5, 7, 10, 11) = 4, and

f2 (4) = max (g,(1)-fl(1)) = max (20) = 20. From table II2

(2) min (5, 5, 7, 10, 111 = 5, nd f 2(5) = max t 2 (), x (g2(1)'f(1), g((2).-f(l)j-

= max (20, max (32, 30) = 32.

If we continue in t~lis manner, we obtain the f2(z) table:

14



)z f (z ) Gz?)

1 4 11011

2 5 52 1 2

3 6 48 2 2

4 8 72 3 2

0 io 6l 5 4

6 11 96 4 2

7 12 156 5 2

8 14 155 5 4

9 17 187 5 7

The entries in the G(z)) and X (l)z2)1 columns are the valies of G and

x (1) respectively, which yield the value of f 2) I f ) = fz

then z(2  and the values associated with z, are not recorded in the table.
i+l ae

We proceed in a similar manner to the construction of the f3(z) table. The

auxiliary tables are

_(3) 2) _(3) 7(2 )( 42) G3 (.F (41) F CF 42) Gf. 2 ( . F

6 4 80 1 7 5 128 1

111= 9 4 180 2 ,111 2  = 9 4 180 2,

14 4 320 3 14 4 320 3

21 4 500 4 P1 4 500

(3)-() ( 2) (2 )  -
C ( 2) G (F).-f( F C G(F)f,F ..... 3" i32 x

8 6 192 1 10 8 288 1

MII3 = 9 4 180 2 ,111 4 = 9 4 180

14 4 320 3 14 4 320 3

21 4 500 4 21 4 500 L

15



(2) (2) (2) FX, G (F). (X ) F G 5(F)- F

10 8 281 12 10 524

115 282, 1116 =11 6 432 2,

14 4 320 3 14 4 520 3

21 4 500 4 21 4 500 4

CF X 3 F (F).f(x 2))N F () 42) .(F) .r,()) F

12 10 524 1 15 U1 384 1

117 -13 8 648 2 ,1118 =13 8 6482

14 4 320 3 14 4 320 ~ 1
21 4 500 4 21 4 500

-(3) (2) f(2) -(3) (2) ,(2))
c Xj G ( ) F c x 2 (). F
F 3 2XFC F F 2______

14 12 544 1 16 14 648 1
1119 =15 1 729 2 , 1lo=15 10 729 2,

14 4 320 3 15 5 512 5

21 4 500 4 21 4 500 4

(2) ( -(3) (2) .2)
-F i G (F)-f2F N ) 3 (F) 2. F

16 14 648 1 19 17 748 1

Iul -, 16 1U 864 2 ,111 12 =17 12 1224 2,

16 6 768 3 18 8 1152 5

21 4 500 4 21 4 500 4

-( ) (2 ) . (2.( -(3) ,(2) (2).j )_
c_. F Xi ' G 3 M 2N c F ... G xF-f2

19 17 T48 1 19 17 748 1

11113=19 14 1377 2 11 14 =19 14 1377 2,

18 8 1152 3 20 10 1296 3

21 4 500 4 21 4 500 4

16



~~~~'25 ((2)~ ''~F•(F l ' )  F x, (F).cF xF  X .(F)

i1 1 22 17 160 5 , 11116 = 22 17 165 ,

20 10 12-96 5 21 11 1536 5

21 4 500 4 21 4 500 4

() 2) (2)Fr F a .f )).

cc w 1

III17 =22 17 1683 2
22 12 21763

22 5 boo 4.

The f (z) table is

1 6 80 1 14

2 7 128 1 5

3 8 192 1 6

10 288 .2 L5

511 432 2 6

6 13 648 2 8

7 15 729 2 10

8 16 664 2 11

9 17 1224 2 12

10 19 1377 2 14

11 21 1536 3 31

12 22 2176 3 12

1I
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Now, tJe fi(z) tables, i 1, 2, 3, will yield the desired results, that. iz,

the value of the maximum pay-off, subject to the constraint on the total cost,

and the policy used to obtain this maximum.

The entries in the tables are interpreted in the following manner:

In the f3(z) table the column labelled f ) contains the values of the

maximum pay-off, subject to the total cost equaling the entries In z I

In the column labelled F( ) we obtain the policy F, which yields this
maximum; and the value in the column labelled (2)(z(A)) associated with

m a x m u m X F ( I ) a s o i t d w h
z 3 )" is the remaining amount to be used for determining the policy G

(which will be obt-ined from the f2 (z) table). From the f 2 (z) table, select

the value in the z2) column which is equal to the previously determined

entry from (2) G(3)). The values from G(z(2) ) and from X() (2)
1F~ (2) G~ 1  ) n G (z

associated with this entry from z are the policy G and value used to

determine the policy P from f1 (z) table, respectively.

In the example the allowable cost is 22. Hence, from the f3 (z) table we

observe that the maximum pay-off is 2176, that F = 3, and that the amount remain-

ing to be allocated is 12 units. Going to the f 2 (z) table, we determine the

policy G = 5 with a remaining cost of 2, which yields the policy P = 2 from the

f 1 (z) table.

Summarizing, we have obtained the optimum policy P = 2, G = 5 and F = 3,

which yields

AN = 8-"7"16= 2176v%52

with a cost of

C P CG + CF = 2 + 10 + 10 = 22.

In the general problem the question arises: How many auxiliary tables does

one construct at each stage? We can compute an upper bound on the number of

tables required. Define

k i = min [C i=i, ... ,n
J

Ki = max [ciji =i, ... , n;

i nMi =mrin4\K 5 C kj
M i -l m i =l,...,n.

J=i+l



'114st utwit,(0 it the taUble I c bounded abrjv'. by M ~kt

Is, ini thc Itli stalre when all1 the enitries Jr, 01( ()columrs exce.ed M, L'hil
E

c'onstrite tlon of the auxiliary tables van bc. halted.
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